
Digit Recognizer
Zhifei Zhang

Department of Electrical Engineering
and Computer Science, UTK

zzhang61@vols.utk.edu

Shiqi Zhong
Department of Electrical Engineering

and Computer Science, UTK
szhong4@vols.utk.edu

Liang Tong
Department of Electrical Engineering

and Computer Science, UTK
ltong@vols.utk.edu

Abstract—This project implements multiple classifiers on the
well-know handwritten digit database MNIST. Exactly, MPP,
kNN, BPNN, decision tree, kmeans, WTA, SOM, multi-SVM,
random forest and CNN are applied. In addition, three classifier
fusion methods—majority voting, confusion matrix and BKS—
are used to improve classification performance. In experiment
results, accuracy and computation time are shown to illustrate
the performance of each classifier. Currently, the error rate of
digit recognition on MNIST database is 0.23%, which is not easy
to be surpassed. Thus, the purpose of this project is to make a
deeper understanding on different classifiers.

I. INTRODUCTION

Handwritten digit recognition is a sort of well studied
topic in pattern recognition and machine learning research.
Its history can be tracked back to around three decades ago.
In 1984, [1] presented a hierarchical structural approach to
recognize certain formula, and experiment was performed on
a small-size data set (40 samples). Finally, it got an accuracy
of 98.1%. Until now, a lot of researchers have competed to
increase the accuracy rate on those well-know handwritten
digit database MNIST. Most recently, the error rate can be
reduced to 0.23% using convolutional neural network (CNN)
[2]. It is an exciting achievement compared to the first shot
[3]–[9] in 1998, when the error rate was 0.7% using CNN
as well. Although handwritten digit recolonization is an “old”
problem, it is becoming an increasingly challenge topic as the
error rate approaches zero.

The MNIST database (Mixed National Institute of Standards
and Technology database) is a large database of handwritten
digits that is commonly used for training various image
processing systems [10]. This database of handwritten digits
has a training set of 60,000 examples, and a test set of 10,000
examples. It is a subset of a larger set available from NIST.
The digits have been size-normalized and centered in a fixed-
size image [11]. Fig. 1 shows some samples from MNIST
training data set. Since the first shot on the MNIST database,
multiple algorithms are applied on it, such as linear classifier,
kNN, decision tree, SVM, neural network, CNN, etc.

The best result using linear classifier is 7.6% [12], in which
the data is preprocessed by deskewing, and pairwise linear
classifier is applied. [13] reduces the error rate to 0.52% using
kNN with non-linear deformation. Boosted stumps cooperated
with Haar features is employed in [14], and the error rate is
0.87%. For SVM, [15] achieves the lowest error rate of 0.56%.
In this work, virtual SVM is presented to get better support
vector. In recent years, the lowest error rate record is refreshed

Fig. 1. Samples of handwritten digit

again and again as the development of neural network and deep
learning (e.g. CNN). [16] reduces the record to 0.35% using
neural network. Then, [2] refreshes the record to 0.23% using
CNN and still keep the best record since 2012. Table I shows
the previous results on MNIST database.

TABLE I
PREVIOUS RESULTS ON MNIST DATABASE

Classifier Preprocessing Error rate (%)
Pairwise linear classifier Deskewing 7.6 [12]
Boosted Stumps Haar features 0.87 [14]
SVM Deskewing 0.56 [15]
kNN Shiftable edges 0.52 [13]
Neural Network None 0.35 [16]
CNN Width normalizations 0.23 [2]

II. SUBSET OF MNIST

The original MNIST database has 60,000 training samples
and 10,000 testing samples. It will be really time-consuming if
a relatively complex algorithm is applied. In [2], for instance,
CNN is implemented with 800 iterations, which may cost
tens of hours on a common computer. For the purpose of
implementing different classification methods and comparing
their performance, a subset of MNIST is used. First, we get
a subset (48,000 samples) from Kaggle—Digit Recognizer.

Then, one out of ten of the Kaggle data is kept in our
final subset. Thereby, there are totally 4800 samples in our
processing.

III. CLASSIFIERS

In this project, several classifiers are implemented, which
are listed in lecture order as following:

• Maximum Posterior Probability (MPP)
• K Nearest Neighbors (kNN)
• Back-Propagation Neural Network (BPNN)
• k-means and winner-take-all
• Self-Organizing Map (SOM)
• Decision Tree (DT)
• Support Vector Machine (SVM)
• Random Forest (RF)
• Convolutional Neural Network (CNN)
Each classifier is applied on the same subset from MNIST,

and cross validation is employed to derive. In detail, 20% of
the subset is randomly selected as testing data, and the remain
is treated as training data. Then, a classifier is applied on the
training and testing data. This procedure can be iterated several
times to ensure a stable accuracy.

A. Maximum Posterior Probability (MPP)

Maximum Posterior Probability(MPP) is based on Bayesian
rule. The classifier for MPP is the discriminant function gi(x).
Consider a two-class case (equal prior), g1(x) = P (w1|x) and
g2(x) = P (w2|x). For a given x, if P (w1|x) > P (w2|x),
x belongs to class 1, otherwise x belongs to class 2. There
are three different discriminant functions based on different
assumptions. The pre-assumption for 3 cases is that each class
obeys Gaussian distribution. Case 1 is a linear discriminant
function which assumes that all features are statistically inde-
pendent and have the same variance. Case 2 is also a linear
discriminant function, which assumes that covariance matrices
for all the classes are identical but not a scalar of identity
matrix. Case 3 is a hyperquadratic discriminant function, and
it has no assumption on the covariance matrices for each
category.

B. K Nearest Neighbors (kNN)

The basic concept of kNN is quite simple. Given a test
sample x, which needs to be classified, a hypersphere with
volume V can be found, in which k training samples are
enclosed. If the number of training samples of class m is larger
than any other enclosed sample classes, then the test sample
will be categorized as class m. If there are equal number of
samples with two classes, then choose the class which has the
minimum distance to the test sample.

Although this way seems very intuitive, it is an equivalent
way of MAP. Suppose there are n samples in total, while nm
samples for each class m. For the enclosed k samples, there
are km samples in class m. The component of calculating
MAP can be represented as below:

• prior probability: P (ωm) =
nm
n

• probability density function: p(x|ωm) =
km
nmV

• normalization constant: p(x) =
k

nV
Thus MAP can be finally calculated as:

p(ωm|x) =
p(x|ωm)P (ωm)

p(x)
=

km
nmV

nm

n
k
nV

=
km
k

(1)

C. Back-Propagation Neural Network (BPNN)

Back-Propagation Neural Network (BPNN) is a feed for-
ward neural network which means there is no feedback during
operation, and the back-propagation only processes during
determination of weights. The general algorithm flow is shown
as follows:

1: Initialize network weights (often small random values)
2: repeat
3: for all training samples do
4: feed forward
5: compute error
6: update weights
7: end for
8: until certain condition is met
After initializing the parameters for the neural network, we

can use the BPNN classifier.

D. K-means and Winner-Take-All (WTA)

Clustering is an unsupervised method to classify a
dataset. In this project, k-meas and winner-take-all (WTA)
are applied. The k-means algorithm is shown as fol-
lows:

1: Initialize clusters
2: repeat
3: assign all samples to their nearest clusters
4: compute the sample mean of each cluster
5: until classification of all samples does not change

The WTA algorithm:
1: Initialize clusters
2: repeat
3: for each sample do
4: assign the sample to the nearest cluster
5: update the center of the corresponding cluster
6: end for
7: until classification of all samples converges

E. Self-Organizing Map (SOM)

This approach is also known as Kohonen Feature Maps,
which is a kind of neural network approach. It is like winner-
take-all approach except that after each sample is classified,
not only the winner will be pulled toward sample, but other
samples are also pulled toward the sample, with different
weights. Its procedure is like:

1: assign each cluster with a random value of cluster center
2: repeat
3: for each sample x do
4: find the nearest cluster center ωα

5: modify ωα with the following formula:

ωk+1
r = ωkr + ε(k)Φ(k)(x− ωkr)

where
ε(k) = εmax(

εmin
εmax

)
k

kmax

Φ(k) = exp(−‖gωr − gωwinner‖2

2σ2
)

6: end for
7: until classification of all samples converges
8: use ωα as the cluster center

F. Decision Tree (DT)

A decision tree is a flowchart-like structure in which each
internal node represents a “test” on an attribute (e.g. whether
a coin flip comes up heads or tails), each branch represents
the outcome of the test and each leaf node represents a class
label (decision taken after computing all attributes). The paths
from root to leaf represents classification rules.

In decision analysis a decision tree and the closely related
influence diagram are used as a visual and analytical decision
support tool, where the expected values (or expected utility)
of competing alternatives are calculated.

A decision tree consists of 3 types of nodes:
1) Decision nodes - commonly represented by squares.
2) Chance nodes - represented by circles.
3) End nodes - represented by triangles.
Decision trees are commonly used in operations research,

specifically in decision analysis, to help identify a strategy
most likely to reach a goal. If in practice decisions have to
be taken online with no recall under incomplete knowledge,
a decision tree should be paralleled by a probability model
as a best choice model or online selection model algorithm.
Another use of decision trees is as a descriptive means for
calculating conditional probabilities.

G. Support Vector Machine (SVM)

Digit recognition is a multi-class problem, but normal SVM
can only separate two classes. So, one v.s. all method is applied
here to realize a multi-SVM classifier. The object function of
SVM with soft margin can be written in Eq. 2.

arg min
w,ξ,b

=

{
1

2
‖w‖2 + C

n∑
i=1

ξi

}
s.t. yi(w · xi − b) ≤ 1− ξi,

ξi ≤ 0, i = 1, · · · , n

(2)

where the ξi is non-negative slack variables that allow points
to be on the wrong side of their soft margin, as well as the
decision boundary, and C is a cost parameter that controls the
amount of overlap [17].

One v.s. all is to set one class as class 1 and the others as
class 2, then a SVM classifier is trained using the redefined
dataset. So, there will be 10 different SVM classifiers since
there are 10 digits (0∼9). In prediction process, a new sample

will be tested on each classifier, and each classifier will yield
a estimated label and corresponding probability (confidence of
estimation). Finally, the estimation with the highest confidence
will be accepted as the finally output of the multi-SVM
classifier.

H. Random Forest (RF)

In decision tree, a tree growing very deep tends to learn
highly irregular patterns, which makes it over fit the training
set because it has low bias, but very high variance. Random
forest is a way of averaging multiple deep decision trees,
trained on different subsets of the same training set, with
the goal of reducing the variance [18]. But the tree learning
process is a little bit different in random forest: if one or a few
features are very strong predictors for the label, these features
will be selected in many of the trees, causing them to become
correlated [19].

Basically, each tree in the random forest is set up from a
randomly selected subset of the raw training set. For example,
there are n trees, each of which is trained on a random subset
and becomes a decision tree fi (i = 1, · · · , n). In prediction
process, the label of a new sample is given by averaging the
predictions from all the individual decision trees. Eq. 3 shows
the decision scheme.

f(x) =
1

n

n∑
i=1

fi(x) (3)

where x denotes a new testing sample.

I. Convolutional Neural Network (CNN)

A convolutional neural network is a type of feed-forward
and back-propagation neural network where the individual
neurons are tiled in such a way that they respond to over-
lapping regions in the visual field [20]. Convolutional net-
works were inspired by biological processes and are variations
of multilayer perceptron which is designed to use minimal
amounts of preprocessing [21]. They are widely used models
for image recognition. A common CNN model (LeNet model)
is shown in Fig. 2.

IV. EXPERIMENT RESULT

Each item of the raw data is a vectorized 28 × 28 gray
image. So, each sample is a 28 × 28 = 784 dimensional
vector. For some classifiers, such as SVM and random forest,
the sample vector can be used directly as features. But in
CNN, for example,the sample vectors have to be reconstructed
into images. If we use the sample vectors as feature space
directly, dimension reduction is necessary. In this project,
correlate coefficients are employed to relatively less correlated
features. Practically, a feature with P value larger than 0.05
is considered as uncorrelated. Finally, the number of features
can be reduced from 784 to around 440. In addition, if PCA
is applied with 95% information kept, there will be around
180 features left. However, PCA will decrease accuracy in
experiment. So, we only used around 440 features finally in
order to balance accuracy and computation time. In addition,

Fig. 2. CNN model [20]

leave-20%-out cross validation is iterated 5 times for each
classifier.

A. MPP

To perform the 3 cases of discriminant function, the build-in
function in the Matlab was used. As for the experiment, all of
the 3 cases were used to evaluate the accuracy and computation
time. The result is shown in Fig. 3 and Table II.

Fig. 3. Experiment result of MPP (◦: accuracy; 4: computation time)

TABLE II
EXPERIMENT RESULT OF MPP

Case Accuracy Standard error Computation time (s)
1 0.8369 0.0055 1.0992
2 0.8460 0.0018 1.1547
3 0.9045 0.0052 1.3727

B. kNN

Matlab build-in function is called to implement kNN. we
use both Euclidean Distance and City-block Distance as the
distance between two clusters. Fig. 4 and Table III indicate
that when k increases, the accuracy will decrease, also those
two distances have very closed performance when k is the
same.

C. BPNN

The Matlab package named DeepLearnToolbox [22] is used
to implement BPNN. One hidden layer is used in BPNN. After
dimension reduction, the dimension of each sample is 441, so

(a) Euclidean distance

(b) City-block distance

Fig. 4. Experiment result of kNN (◦: accuracy; 4: computation time)

the input layer of BPNN has 441 nodes. There are 10 different
digits, so the output layer has 10 nodes. For the hidden layer,
more nodes means more time-consuming. Here, we set around
60 nodes for the hidden layer. Fig. 5 and Table IV show the
experiment result.

D. K-means and WTA

To perform the experiment, the build-in k-means function
in Matlab is used, and different kinds of distances are utilized.
In k-means, the total cluster number is set as the number of
classes (10). After clustering, the samples were divided into
10 clusters but the label for each cluster does not match the
ground truth. Therefore, we check the ground truth of all

TABLE III
EXPERIMENT RESULT OF KNN

(a) Euclidean Distance
k Accuracy Standard error Computation time (s)

10 0.9083 0.0048 1.82
20 0.8867 0.0041 1.79
30 0.8760 0.0043 1.93
40 0.8624 0.0037 1.81
50 0.8581 0.0032 1.88

(b) City-block Distance
k Accuracy Standard error Computation time (s)

10 0.8979 0.0038 1.85
20 0.8781 0.0050 1.81
30 0.8648 0.0054 1.77
40 0.8571 0.0036 1.93
50 0.8464 0.0052 1.97

Fig. 5. Experiment result of BPNN (◦: accuracy; 4: computation time)

TABLE IV
EXPERIMENT RESULT OF BPNN

Number of epoch Accuracy Standard error Computation time (s)
1 0.8114 0.0311 0.52
5 0.8650 0.0130 2.59
10 0.8993 0.0055 5.18
20 0.9029 0.0053 10.36
50 0.9026 0.0033 25.90

samples within a cluster and use the major label as ground
truth of this cluster. Table V shows the experiment result.

TABLE V
EXPERIMENT RESULT OF K-MEANS

Distance Accuracy Standard error Computation time (s)
City-block 0.4036 0.0107 0.9349
Euclidean 0.4088 0.0259 0.8624

Cosine 0.4350 0.0185 0.7743
Correlation 0.4548 0.0288 0.7731

By the same token, WTA is implemented using the wta.cpp
provides in class. Not surprisingly, the accuracy is 0.4352,
which is similar with k-means.

E. SOM

We use Matlab build-in function to implement SOM by
using different epoch iterations. The results are shown in Fig.

6 and Table VI. When the epoch iterations increase, it needs

Fig. 6. Experiment result of SOM (◦: accuracy; 4: computation time)

TABLE VI
EXPERIMENT RESULT OF SOM

Epoch Accuracy Standard error Computation time (s)
200 0.7455 0.0100 17
400 0.7533 0.0110 37
600 0.7576 0.0065 57
800 0.7538 0.0068 75

1000 0.7600 0.0098 97

more time to converge. However, the accuracy and standard
error are almost the same. When epoch = 600, the SOM
weight positions are shown in Fig. 7.

Fig. 7. SOM weight positions

F. DT

Matlab build-in function is called to implement Decision
Tree. Firstly we use 4 different algorithms in MATLAB:Exact,
PCA, PullLeft and OVAbyClass. We then use different Min-
Parent (which means minimum number of branch node ob-
servations) under the Exact algorithm. The results are in Fig.

(a) Different algorithms

(b) Different MinParent

Fig. 8. Experiment result of DT (◦: accuracy; 4: computation time)

8 and Table VII. For the four algorithms, they can get nearly
the same accuracy. However, when we use larger MinParent,
the accuracy will decrease.

TABLE VII
EXPERIMENT RESULT OF DT

(a) Different Algorithms
Alglrithm Accuracy Standard error Computation time (s)

Exat 0.7074 0.0104 10.06
PCA 0.7088 0.0046 9.01

PullLeft 0.6998 0.0060 9.36
OVAbyClass 0.7205 0.0071 9.44

(a) Different MinParent
MinParent Accuracy Standard error Computation time (s)

10 0.7074 0.0104 10.06
20 0.6993 0.0077 8.61
30 0.6974 0.0088 8.42
40 0.6845 0.0106 8.7
50 0.6788 0.0108 8.65

G. SVM

LibSVM-3.17 [23] is employed to implement basic SVM
algorithm, where radial basis function (RBF) is chosen as the
kernel. In LibSVM-3.17, the RBF kernel function is expressed
as Eq. 4.

RBF = exp
(
−γ|u− v|2

)
(4)

where γ is equivalent to the inverse of variance. Larger γ will
cause sharper decision boundary, which may result in over
fitting. Experimentally , γ = 1/n, where n is the number of
features. Through experiment, we set γ = 0.001, under which
the highest accuracy can be achieved and the computation time
is around 68 seconds. Expatriation result is shown in Fig. 9 and
Table VIII. Note that the computation time corresponds to the
running time of one out of five iterations in cross validation.

Fig. 9. Experiment result of SVM (◦: accuracy; 4: computation time)

TABLE VIII
EXPERIMENT RESULT OF SVM

γ = 0.001
Cost Accuracy Standard error Computation time (s)

1 0.9186 0.0050 78.40
5 0.9252 0.0034 68.50
10 0.9357 0.0028 68.27
20 0.9331 0.0024 67.03
50 0.9286 0.0027 65.96

100 0.9350 0.0017 67.55
1000 0.9364 0.0042 64.89

cost = 10
γ Accuracy Standard error Computation time (s)

0.01 0.8602 0.0044 395.19
0.001 0.9357 0.0028 68.27

0.0001 0.8943 0.0028 68.89

H. RF

Matlab build-in function is called to implement random
forest. Fig. 10 shows the result. And Table IX shows the
detailed result.

TABLE IX
EXPERIMENT RESULT OF RANDOM FOREST

Number of trees Accuracy Standard error Computation time (s)
1 0.6624 0.0047 0.14

10 0.8660 0.0027 0.81
100 0.9245 0.0018 7.45

1000 0.9298 0.0038 73.38
10000 0.9288 0.0048 884.96

Samples of individual trees is shown in Fig. 11.

Fig. 10. Experiment result of RF (◦: accuracy; 4: computation time)

(a) tree No.1

(b) tree No.2

(c) tree No.10

Fig. 11. Samples of individual trees in RF experiment (totally 10 trees)

I. CNN

The Matlab package named DeepLearnToolbox [22] is used
to implement CNN. Totally, two layers are used in CNN, and
the two layer use 6 and 12 filters respectively. In maximum
pooling process, 2 × 2 widow is used. Fig. 12 and Table X
show the result. It can achieve an accuracy of 97.14% at most.

Fig. 12. Experiment result of CNN (◦: accuracy; 4: computation time)

TABLE X
EXPERIMENT RESULT OF CNN

Number of epoch Accuracy Standard error Computation time (s)
1 0.8167 0.0038 35
5 0.9369 0.0021 175

10 0.9637 0.0009 350
100 0.9714 0.0001 3500
500 0.9714 0.0001 17500

Compared with the highest accuracy (99.77%) in [2], there
are two reasons why we get a lower accuracy:
(1) We use a subset of original MNIST database.
(2) We use less filters and iterations in CNN.

For the first reason, we tried to implement CNN on the
original database (60,000 training samples and 10,000 testing
samples) with 100 epoch. The accuracy can achieve 98.8%.

For the second reason, [2] runs CNN with 20 and 40 filters
respectively for the first and second layers and with 800 epoch.
In our project, only 6 and 12 filters are used in corresponding
layers, and the number of epoch is 500 at most. In addition,
[2] created additional dataset by normalizing digit width to
different values and assembles multiple basic CNN to build a
larger network.

Above all, smaller data size, simpler structure and less
iteration cause the lower accuracy.

V. CLASSIFIER FUSION

In order to increase accuracy, outputs of multiple classi-
fiers are fused to improve the performance. In this project,
three classifier fusion methods are implemented, and three
classifiers—RF, SVM and CNN—are fused.

A. Majority Voting (MV)
Majority voting is the most direct way to combine different

classifiers. A prediction given by most classifier will be
considered as the final fused estimation.

B. Naive Bayes Combination
Naive Bayes combination assumes all classifiers are mu-

tually independent. Confusion matrix (CM) is used here to
derive a fused estimation, under which Bayes rule is latent.
Fig. 13 shows the confusion matrices of RF, SVM and CNN.

(a) Confusion matrix of RF (b) Confusion matrix of SVM

(c) Confusion matrix of CNN

Fig. 13. Confusion matrices

C. Behavior-Knowledge Space (BKS)

Behavior-knowledge space method will build a k-
dimensional behavior-knowledge space (k is the number of
classifiers), which is estimated to accumulate statistical infor-
mation from the individual classifiers’ behaviors derived from
learned patterns [24]. After forming the behavior-knowledge
space, estimations of all classifiers on a new testing sample
can be used as index to find the final decision. Fig. 14 shows
the accuracy before and after fusion.

Fig. 14. Accuracy

VI. DISCUSSION

In this project, different kinds of classifiers are implemented,
as well as classifier fusion. Regardless computation time, CNN
can achieve the highest accuracy among others, and CNN
is more potential to perform better. Implementing classifier
fusion with the three classifiers (RF, SVM and CNN), the final

accuracy is boosted from 97.1% to 98.5% using BKS method.
Overall, the accuracy of different methods is summarized in
Table XI and Fig. 15.

TABLE XI
ACCURACY OF ALL METHODS

Method Accuracy Standard error
WAT 0.4352 0.0292

k-means 0.4548 0.0288
DT 0.7205 0.0071

SOM 0.7600 0.0098
BPNN 0.9029 0.0053
MPP 0.9045 0.0052
kNN 0.9083 0.0048
RF 0.9298 0.0038

SVM 0.9364 0.0042
CNN 0.9714 0.0001
MV 0.9655 —
CM 0.9762 —
BKS 0.9845 —

Fig. 15. Accuracy of all methods

From the experiment results, unsupervised methods (k-
means, WAT and SOM) performs worse than those supervised
methods. Roughly, supervised methods can achieve a accuracy
of over 90% that is twice higher than unsupervised methods.
SOM performs the best in unsupervised method. Its accuracy
is even a little bit higher than DT (supervised method).

Theoretically, RF can be seen as an improvement of DT, and
CNN can be considered as an extension of BPNN. From the
experiment results, the improved methods work much better.

REFERENCES

[1] A. Belaid and J.-P. Haton, “A syntactic approach for handwritten mathe-
matical formula recognition,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, no. 1, pp. 105–111, 1984.

[2] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 3642–
3649.

[3] Y. Bengio, Y. LeCun, C. Nohl, and C. Burges, “Lerec: A nn/hmm hybrid
for on-line handwriting recognition,” Neural Computation, vol. 7, no. 6,
pp. 1289–1303, November 1995.

[4] L. Jackel, M. Battista, H. Baird, J. Ben, J. Bromley, C. Burges,
E. Cosatto, J. Denker, H. Graf, H. Katseff, Y. LeCun, C. Nohl,
E. Sackinger, J. Shamilian, T. Shoemaker, C. Stenard, I. Strom, R. Ting,
T. Wood, and Z. C., “Neural-net applications in character recognition and
document analysis,” in Neural-Net Applications in Telecommunications.
Kluwer Academic Publishers, 1995.

[5] Y. LeCun, L. D. Jackel, L. Bottou, C. Cortes, J. S. Denker, H. Drucker,
I. Guyon, U. A. Muller, E. Sackinger, P. Simard, and V. Vapnik, “Learn-
ing algorithms for classification: A comparison on handwritten digit
recognition,” in Neural Networks: The Statistical Mechanics Perspective,
J. H. Oh, C. Kwon, and S. Cho, Eds. World Scientific, 1995, pp. 261–
276.

[6] Y. LeCun, L. D. Jackel, L. Bottou, A. Brunot, C. Cortes, J. S. Denker,
H. Drucker, I. Guyon, U. A. Muller, E. Sackinger, P. Simard, and
V. Vapnik, “Comparison of learning algorithms for handwritten digit
recognition,” in International Conference on Artificial Neural Networks,
F. Fogelman and P. Gallinari, Eds. Paris: EC2 & Cie, 1995, pp. 53–60.

[7] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech,
and time-series,” in The Handbook of Brain Theory and Neural Net-
works, M. A. Arbib, Ed. MIT Press, 1995.

[8] Y. LeCun, “Pattern recognition and neural networks,” in The Handbook
of Brain Theory and Neural Networks, M. A. Arbib, Ed. MIT Press,
1995.

[9] Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker,
H. Drucker, I. Guyon, U. Muller, E. Sackinger et al., “Comparison of
learning algorithms for handwritten digit recognition,” in International
conference on artificial neural networks, vol. 60, 1995.

[10] Wikipedia. (2014) Mnist database. [Online]. Available: http://en.
wikipedia.org/wiki/MNIST database#cite note-1

[11] Y. LeCun, C. Cortes, and C. J. Burges. (2014) The mnist database
of handwritten digits. [Online]. Available: http://yann.lecun.com/exdb/
mnist/index.html

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, November 1998.

[13] D. Keysers, T. Deselaers, C. Gollan, and H. Ney, “Deformation models
for image recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, no. 8, pp. 1422–1435, 2007.

[14] B. Kgl and R. Busa-Fekete, “Boosting products of base classifiers,”
Proceedings of the 26th Annual International Conference on Machine
Learning, pp. 497–504, 2009.

[15] D. Decoste and B. Schölkopf, “Training invariant support vector ma-
chines,” Machine Learning, vol. 46, no. 1-3, pp. 161–190, 2002.

[16] D. Claudiu Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
“Deep big simple neural nets excel on handwritten digit recognition,”
arXiv preprint arXiv:1003.0358, 2010.

[17] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, “The entire regularization
path for the support vector machine,” in Journal of Machine Learning
Research, 2004, pp. 1391–1415.

[18] T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, and
R. Tibshirani, The elements of statistical learning. Springer, 2009,
vol. 2, no. 1.

[19] Wikipedia. (2014) Random forest. [Online]. Available: http://en.
wikipedia.org/wiki/Random forest#cite note-elemstatlearn-9

[20] LISALab. (2014) Convolutional neural networks (lenet)—deeplearning
0.1 documentation. [Online]. Available: http://deeplearning.net/tutorial/
lenet.html

[21] Y. LeCun. (2013) Lenet-5, convolutional neural networks. [Online].
Available: http://yann.lecun.com/exdb/lenet/

[22] R. B. Palm, “Prediction as a candidate for learning deep hierarchical
models of data,” Asmussens Alle, Building 305, DK-2800 Kgs.
Lyngby, Denmark, 2012, supervised by Associate Professor Ole
Winther, owi@imm.dtu.dk, DTU Informatics, and Morten Mørup,
mm@imm.dtu.dk, DTU Informatics. [Online]. Available: http://www.
imm.dtu.dk/English.aspx

[23] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011, software available at http://www.csie.ntu.
edu.tw/∼cjlin/libsvm.

[24] Y. Huang and C. Suen, “The behavior-knowledge space method for
combination of multiple classifiers,” in IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition. INSTITUTE OF
ELECTRICAL ENGINEERS INC (IEEE), 1993, pp. 347–347.

